首页 > 编程笔记 > Python笔记 阅读:4

BRNN双向循环神经网络详解(PyTorch实现)

RNN(循环神经网络)和 LSTM(长短时记忆)都只能依据之前时刻的时序信息来预测下一时刻的输出,但有些问题中当前时刻的输出不仅可能和之前的状态有关,还可能和未来的状态有关系。

例如,预测一句话中缺失的单词不仅需要根据前文来判断,还需要考虑它后面的内容,真正做到基于上下文判断。

双向循环神经网络(BRNN)由两个 RNN 上下叠加在一起组成,输出由这两个 RNN 的状态共同决定。下图为一个含单隐藏层的 BRNN 的架构。


图 1 BRNN 架构

下面介绍 BRNN 的具体定义。给定时间步 t 的小批量输入 Xt∈Rn×d(样本数为 n,输入个数为 d)和隐藏层激活函数 ϕ,在双向循环神经网络的架构中,设该时间步正向隐藏状态为:


(正向隐藏单元个数为 h),反向隐藏状态为:


反向隐藏单元个数为h)。可以分别计算正向隐藏状态和反向隐藏状态:


其中,权重:


和偏差:


均为模型参数。

使用连续两个方向的隐藏状态得到隐藏状态  Ht∈Rn×2h,并将其输入到输出层。输出层计算输出 Ot∈Rn×q(输出个数为 q):

Ot=HtWhq+bq


【实例】 BRNN 的 PyTorch 实现。
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms

# 设备
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# 超参数
sequence_length = 28
input_size = 28
hidden_size = 128
num_layers = 2
num_classes = 10
batch_size = 100
num_epochs = 2
learning_rate = 0.003

# MNIST 数据集
train_dataset = torchvision.datasets.MNIST(root='../../data/', train=True, transform=transforms.ToTensor(), download=True)
test_dataset = torchvision.datasets.MNIST(root='../../data/', train=False, transform=transforms.ToTensor())

# 数据加载器
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)

# 双向循环神经网络(多对一)
class BiRNN(nn.Module):
    def __init__(self, input_size, hidden_size, num_layers, num_classes):
        super(BiRNN, self).__init__()
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True, bidirectional=True)
        self.fc = nn.Linear(hidden_size * 2, num_classes)  # 表示双向

    def forward(self, x):
        # 设置初始状态
        h0 = torch.zeros(self.num_layers * 2, x.size(0), self.hidden_size).to(device)
        c0 = torch.zeros(self.num_layers * 2, x.size(0), self.hidden_size).to(device)
        # 前向传播 LSTM
        out, _ = self.lstm(x, (h0, c0))
        # 解码上一个时间步的隐藏状态
        out = self.fc(out[:, -1, :])
        return out

model = BiRNN(input_size, hidden_size, num_layers, num_classes).to(device)

# 损失和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

# 训练模型
total_step = len(train_loader)
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):
        images = images.reshape(-1, sequence_length, input_size).to(device)
        labels = labels.to(device)
        # 前向传播
        outputs = model(images)
        loss = criterion(outputs, labels)
        # 向后优化
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        if (i + 1) % 100 == 0:
            print(f'Epoch [{}/{}], Step [{}/{}], Loss: {.4f}'
                   .format(epoch + 1, num_epochs, i + 1, total_step, loss.item()))
# 测试模型
with torch.no_grad():
    correct = 0
    total = 0
    for images, labels in test_loader:
        images = images.reshape(-1, sequence_length, input_size).to(device)
        labels = labels.to(device)
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()
    print(f'Test Accuracy of the model on the 10000 test images: {.2f}%'.format(100 * correct / total))

# 模型保存
torch.save(model.state_dict(), 'model.ckpt')
运行程序,输出如下:
Epoch[1/2],Step[100/600],Loss:0.6954
Epoch[1/2],Step[200/600],Loss:0.3623
Epoch[1/2],Step[300/600],Loss:0.1572
Epoch[1/2],Step[400/600],Loss:0.1423
Epoch[1/2],Step[500/600],Loss:0.1048
Epoch[1/2],Step[600/600],Loss:0.0815
Epoch[2/2],Step[100/600],Loss:0.1204
Epoch[2/2],Step[200/600],Loss:0.1067
Epoch[2/2],Step[300/600],Loss:0.1271
Epoch[2/2],Step[400/600],Loss:0.0144
Epoch[2/2],Step[500/600],Loss:0.0324
Epoch[2/2],Step[600/600],Loss:0.0608
Test Accuracy of the model on the 10000 test images:97.38%

相关文章