BRNN双向循环神经网络详解(PyTorch实现)
RNN(循环神经网络)和 LSTM(长短时记忆)都只能依据之前时刻的时序信息来预测下一时刻的输出,但有些问题中当前时刻的输出不仅可能和之前的状态有关,还可能和未来的状态有关系。
例如,预测一句话中缺失的单词不仅需要根据前文来判断,还需要考虑它后面的内容,真正做到基于上下文判断。
双向循环神经网络(BRNN)由两个 RNN 上下叠加在一起组成,输出由这两个 RNN 的状态共同决定。下图为一个含单隐藏层的 BRNN 的架构。

图 1 BRNN 架构
下面介绍 BRNN 的具体定义。给定时间步 t 的小批量输入 Xt∈Rn×d(样本数为 n,输入个数为 d)和隐藏层激活函数 ϕ,在双向循环神经网络的架构中,设该时间步正向隐藏状态为:
(正向隐藏单元个数为 h),反向隐藏状态为:
反向隐藏单元个数为h)。可以分别计算正向隐藏状态和反向隐藏状态:
其中,权重:
和偏差:
均为模型参数。
使用连续两个方向的隐藏状态得到隐藏状态 Ht∈Rn×2h,并将其输入到输出层。输出层计算输出 Ot∈Rn×q(输出个数为 q):
【实例】 BRNN 的 PyTorch 实现。
例如,预测一句话中缺失的单词不仅需要根据前文来判断,还需要考虑它后面的内容,真正做到基于上下文判断。
双向循环神经网络(BRNN)由两个 RNN 上下叠加在一起组成,输出由这两个 RNN 的状态共同决定。下图为一个含单隐藏层的 BRNN 的架构。

图 1 BRNN 架构
下面介绍 BRNN 的具体定义。给定时间步 t 的小批量输入 Xt∈Rn×d(样本数为 n,输入个数为 d)和隐藏层激活函数 ϕ,在双向循环神经网络的架构中,设该时间步正向隐藏状态为:

(正向隐藏单元个数为 h),反向隐藏状态为:

反向隐藏单元个数为h)。可以分别计算正向隐藏状态和反向隐藏状态:

其中,权重:

和偏差:

均为模型参数。
使用连续两个方向的隐藏状态得到隐藏状态 Ht∈Rn×2h,并将其输入到输出层。输出层计算输出 Ot∈Rn×q(输出个数为 q):
Ot=HtWhq+bq
【实例】 BRNN 的 PyTorch 实现。
import torch import torch.nn as nn import torchvision import torchvision.transforms as transforms # 设备 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 超参数 sequence_length = 28 input_size = 28 hidden_size = 128 num_layers = 2 num_classes = 10 batch_size = 100 num_epochs = 2 learning_rate = 0.003 # MNIST 数据集 train_dataset = torchvision.datasets.MNIST(root='../../data/', train=True, transform=transforms.ToTensor(), download=True) test_dataset = torchvision.datasets.MNIST(root='../../data/', train=False, transform=transforms.ToTensor()) # 数据加载器 train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False) # 双向循环神经网络(多对一) class BiRNN(nn.Module): def __init__(self, input_size, hidden_size, num_layers, num_classes): super(BiRNN, self).__init__() self.hidden_size = hidden_size self.num_layers = num_layers self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True, bidirectional=True) self.fc = nn.Linear(hidden_size * 2, num_classes) # 表示双向 def forward(self, x): # 设置初始状态 h0 = torch.zeros(self.num_layers * 2, x.size(0), self.hidden_size).to(device) c0 = torch.zeros(self.num_layers * 2, x.size(0), self.hidden_size).to(device) # 前向传播 LSTM out, _ = self.lstm(x, (h0, c0)) # 解码上一个时间步的隐藏状态 out = self.fc(out[:, -1, :]) return out model = BiRNN(input_size, hidden_size, num_layers, num_classes).to(device) # 损失和优化器 criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) # 训练模型 total_step = len(train_loader) for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): images = images.reshape(-1, sequence_length, input_size).to(device) labels = labels.to(device) # 前向传播 outputs = model(images) loss = criterion(outputs, labels) # 向后优化 optimizer.zero_grad() loss.backward() optimizer.step() if (i + 1) % 100 == 0: print(f'Epoch [{}/{}], Step [{}/{}], Loss: {.4f}' .format(epoch + 1, num_epochs, i + 1, total_step, loss.item())) # 测试模型 with torch.no_grad(): correct = 0 total = 0 for images, labels in test_loader: images = images.reshape(-1, sequence_length, input_size).to(device) labels = labels.to(device) outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print(f'Test Accuracy of the model on the 10000 test images: {.2f}%'.format(100 * correct / total)) # 模型保存 torch.save(model.state_dict(), 'model.ckpt')运行程序,输出如下:
Epoch[1/2],Step[100/600],Loss:0.6954 Epoch[1/2],Step[200/600],Loss:0.3623 Epoch[1/2],Step[300/600],Loss:0.1572 Epoch[1/2],Step[400/600],Loss:0.1423 Epoch[1/2],Step[500/600],Loss:0.1048 Epoch[1/2],Step[600/600],Loss:0.0815 Epoch[2/2],Step[100/600],Loss:0.1204 Epoch[2/2],Step[200/600],Loss:0.1067 Epoch[2/2],Step[300/600],Loss:0.1271 Epoch[2/2],Step[400/600],Loss:0.0144 Epoch[2/2],Step[500/600],Loss:0.0324 Epoch[2/2],Step[600/600],Loss:0.0608 Test Accuracy of the model on the 10000 test images:97.38%