NumPy线性代数

 
NumPy 提供了 numpy.linalg 模块,该模块中包含了一些常用的线性代数计算方法,下面对常用函数做简单介绍:

NumPy线性代数函数
函数名称 描述说明
dot 两个数组的点积。
vdot 两个向量的点积。
inner 两个数组的内积。
matmul 两个数组的矩阵积。
det 计算输入矩阵的行列式。
solve 求解线性矩阵方程。
inv 计算矩阵的逆矩阵,逆矩阵与原始矩阵相乘,会得到单位矩阵。

numpy.dot()

按照矩阵的乘法规则,计算两个矩阵的点积运算结果。当输入一维数组时返回一个结果值,若输入的多维数组则同样返回一个多维数组结果。

输入一维数组,示例如下:
import numpy as np
A=[1,2,3]
B=[4,5,6]
print(np.dot(A,B))
输出结果:
32
输入二维数组时,示例如下:
import numpy as np 
a = np.array([[100,200],
             [23,12]]) 
b = np.array([[10,20],
            [12,21]]) 
dot = np.dot(a,b) 
print(dot) 
输出结果:
[[3400 6200]
[ 374  712]]
对于上述输出结果,它的计算过程如下:

[[100*10+200*12,100*20+200*21]

[23*10+12*12,23*20+12*21]]

点积运算就是将 a 数组的每一行元素与 b 数组的每一列元素相乘再相加。

numpy.vdot()

该函数用于计算两个向量的点积结果,与 dot() 函数不同。
import numpy as np 
a = np.array([[100,200],[23,12]]) 
b = np.array([[10,20],[12,21]]) 
vdot = np.vdot(a,b) 
print(vdot)  
输出结果:

5528

numpy.inner()

inner() 方法用于计算数组之间的内积。当计算的数组是一维数组时,它与 dot() 函数相同,若输入的是多维数组则两者存在不同,下面看一下具体的实例。
import numpy as np
A=[[1 ,10],
    [100,1000]]
B=[[1,2],
    [3,4]]
#inner函数
print(np.inner(A,B))
#dot函数
print(np.dot(A,B))
输出结果:

[[  21   43]
[2100 4300]]

[[  31   42]
[3100 4200]]

inner() 函数的计算过程是 A 数组的每一行与 B 数组的每一行相乘再相加,如下所示:
[[1*1+2*10  1*3+10*4 ]
[100*1+1000*2  100*3+1000*4]]
dot() 则表示是 A 数组每一行与 B 数组的每一列相乘。

numpy.matmul()

该函数返回两个矩阵的乘积,假如两个矩阵的维度不一致,就会产生错误。
import numpy as np 
a = np.array([[1,2,3],[4,5,6],[7,8,9]]) 
b = np.array([[23,23,12],[2,1,2],[7,8,9]]) 
mul = np.matmul(a,b) 
print(mul)  
输出结果:
[[ 48  49  43]
[144 145 112]
[240 241 181]]

numpy.linalg.det()

该函数使用对角线元素来计算矩阵的行列式,计算 2*2(两行两列) 的行列式,示例如下:
[[1,2],
 [3,4]]
通过对角线元素求行列式的结果(口诀:“一撇一捺”计算法):

1*4-2*3=-2

我们可以使用 numpy.linalg.det() 函数来完成计算。示例如下:
import numpy as np 
a = np.array([[1,2],[3,4]]) 
print(np.linalg.det(a))  
输出结果:

-2.0000000000000004

numpy.linalg.solve()

该函数用于求解线性矩阵方程组,并以矩阵的形式表示线性方程的解,如下所示:
3X  +  2 Y + Z =  10  
X + Y + Z = 6
X + 2Y - Z = 2
首先将上述方程式转换为矩阵的表达形式:
方程系数矩阵:
3   2   1 
1   1   1 
1   2  -1
方程变量矩阵:
X 
Y 
Z  
方程结果矩阵:
10 
6
2
如果用  m 、x、n 分别代表上述三个矩阵,其表示结果如下:
m*x=n 或 x=n/m
系数矩阵结果矩阵传递给 numpy.solve() 函数,即可求出线程方程的解,如下所示:
import numpy as np
m = np.array([[3,2,1],[1,1,1],[1,2,-1]])
print ('数组 m:')
print (m)
print ('矩阵 n:')
n = np.array([[10],[6],[2]])
print (n)
print ('计算:m^(-1)n:')
x = np.linalg.solve(m,n)
print (x)
输出结果:
x为线性方程的解:
[[1.]
[2.]
[3.]]

numpy.linalg.inv()

该函数用于计算矩阵的逆矩阵,逆矩阵与原矩阵相乘得到单位矩阵。示例如下:
import numpy as np 
a = np.array([[1,2],[3,4]]) 
print("原数组:",a) 
b = np.linalg.inv(a) 
print("求逆:",b)  
输出结果:
原数组:
[[1 2]
[3 4]]
求逆:
[[-2.   1. ]
[ 1.5 -0.5]]

关注公众号「站长严长生」,在手机上阅读所有教程,随时随地都能学习。本公众号由站长亲自运营,长期更新,坚持原创,专注于分享创业故事+学习历程+工作记录+生活日常+编程资料。

公众号二维码
微信扫码关注公众号